20 research outputs found

    A framework for engaging stakeholders in solving real-world water resources management problems

    Get PDF
    Multi-objective evolutionary algorithms (MOEAs) are becoming increasingly popular for solving environmental and water resources optimisation problems. In the past, the focus of these studies has generally been on methodological issues related to the optimisation algorithm, while the incorporation of stakeholder preferences in the MOEA solution process has largely been ignored. In recent years, there has been increased recognition of the need to apply these approaches to real-world problems to facilitate the realisation of their full potential. However, in most of these studies, stakeholder input was only used to direct the optimisation search process or select the final optimal solution(s), while the contribution of stakeholder input to other important components of the problem solving process was not considered. The reason for this is that the full consideration of stakeholder input in solving environmental and water resources optimisation problems requires the development of a more holistic approach, which involves a range of additional challenges. To address these challenges, a framework for including stakeholder input in real-world optimisation problems has been developed as part of the Optimal Water Resources Mix (OWRM) project initiated by the South Australian Government through the Goyder Institute for Water Research. The framework includes a conceptual framework (Figure 1) and a procedure for its implementation. The framework was applied to an urban water supply security study for Adelaide, South Australia. A summary of the framework and how it was implemented to identify optimal water sourcing options for the Adelaide case study is presented in this paper. This study highlights the important role of stakeholder input at the various stages of the problem formulation and optimisation process, analysis and results, although it can be expensive and time consuming to do so. It is recommended that adequate resources be made available for stakeholder engagement in project plans and budgets, as there needs to be clear and ongoing communication between stakeholder groups throughout the project. It also demonstrates that the use of MOEAs as the optimisation engine, together with appropriate stakeholder input, provides a combination that is well-suited to solving real-world water resources problems.W. Wu, H. R. Maier, G. C. Dandy, R. Leonard c, K. Bellette, S. M. Cuddy and S. Maheepal

    Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions

    Get PDF
    Abstract not availableH.R. Maier, Z. Kapelan, Kasprzyk, J. Kollat, L.S. Matott, M.C. Cunha, G.C. Dandy, M.S. Gibbs, E. Keedwell, A. Marchi, A. Ostfeld, D. Savic, D.P. Solomatine, J.A. Vrugt, A.C. Zecchin, B.S. Minsker, E.J. Barbour, G. Kuczera, F. Pasha, A. Castelletti, M. Giuliani, P.M. Ree

    The Battle of the Water Networks II (BWN-II)

    Get PDF
    The Battle of the Water Networks II (BWN-II) is the latest of a series of competitions related to the design and operation of water distribution systems (WDSs) undertaken within the Water Distribution Systems Analysis (WDSA) Symposium series. The BWN-II problem specification involved a broadly defined design and operation problem for an existing network that has to be upgraded for increased future demands, and the addition of a new development area. The design decisions involved addition of new and parallel pipes, storage, operational controls for pumps and valves, and sizing of backup power supply. Design criteria involved hydraulic, water quality, reliability, and environmental performance measures. Fourteen teams participated in the Battle and presented their results at the 14th Water Distribution Systems Analysis (WDSA 2012) conference in Adelaide, Australia, September 2012. This paper summarizes the approaches used by the participants and the results they obtained. Given the complexity of the BWN-II problem and the innovative methods required to deal with the multi-objective, high dimensional and computationally demanding nature of the problem, this paper represents a snap-shot of state of the art methods for the design and operation of water distribution systems. A general finding of this paper is that there is benefit in using a combination of heuristic engineering experience and sophisticated optimization algorithms when tackling complex real-world water distribution system design problems.Angela Marchi...Angus R. Simpson, Aaron C. Zecchin, Holger R. Maier...Christopher Stokes, Wenyan Wu, Graeme C. Dandy...et al

    The Battle of the Water Networks II (BWN-II)

    Get PDF
    The Battle of the Water Networks II (BWN-II) is the latest of a series of competitions related to the design and operation of water distribution systems (WDSs) undertaken within the Water Distribution Systems Analysis (WDSA) Symposium series. The BWN-II problem specification involved a broadly defined design and operation problem for an existing network that has to be upgraded for increased future demands, and the addition of a new development area. The design decisions involved addition of new and parallel pipes, storage, operational controls for pumps and valves, and sizing of backup power supply. Design criteria involved hydraulic, water quality, reliability, and environmental performance measures. Fourteen teams participated in the Battle and presented their results at the 14th Water Distribution Systems Analysis (WDSA 2012) conference in Adelaide, Australia, September 2012. This paper summarizes the approaches used by the participants and the results they obtained. Given the complexity of the BWN-II problem and the innovative methods required to deal with the multi-objective, high dimensional and computationally demanding nature of the problem, this paper represents a snap-shot of state of the art methods for the design and operation of water distribution systems. A general finding of this paper is that there is benefit in using a combination of heuristic engineering experience and sophisticated optimization algorithms when tackling complex real-world water distribution system design problems.Angela Marchi...Angus R. Simpson, Aaron C. Zecchin, Holger R. Maier...Christopher Stokes, Wenyan Wu, Graeme C. Dandy...et al

    Beyond validation: assessing the legitimacy of artificial neural network models

    Get PDF
    Artificial neural network models have been used extensively for prediction and forecasting over the last 25 years. As the data used to develop ANNs contain important information about the physical processes being modelled, it is generally implied that a model that has been calibrated (trained) and performs well on an independent set of validation data represents the underlying physical processes of the system being modelled. However, this is not necessarily the case, most likely due to problems with equifinality, where different combinations of model parameters (e.g. connection weights) result in similar predictive performance. Consequently, there is also a need to check the behaviour of calibrated ANN models as part of the validation process, which is commonly referred to as structural, conceptual or scientific validation (Figure 1). This checks whether the input-output relationship captured by the model is plausible in accordance with a priori system understanding. In this paper, the importance of considering structural validation is demonstrated. This is achieved by developing ANN models with different numbers of hidden nodes for two environmental modelling case studies from the literature namely, salinity forecasting in the River Murray in South Australia and the prediction of treated water turbidity at a water treatment plant based on raw water quality and the administered alum dose. The validation errors are then compared with corresponding model behaviours. This was done using the validann R-package, which caters to a range of structural validation approaches. Results show that ANN models producing the best fit to the data do not necessarily result in models that behave in accordance with underlying system understanding.</p

    Reabilitação de redes coletivas de sistemas pressurizados de irrigação Rehabilitation of collective networks of pressurized irrigation systems

    No full text
    Apresenta-se, neste trabalho, um método de otimização econômica para a reabilitação de redes ramificadas pressurizadas de distribuição de água para projetos de irrigação que se encontram com deficiência de vazão e pressão nos pontos de consumo. O método poderá ser aplicado a redes malhadas de abastecimento urbano, desde que sejam transformadas em ramificadas, através do método do seccionamento fictício. A metodologia empregada se baseia no método Granados, de otimização econômica de redes pressurizadas; trata-se de um processo iterativo que seleciona, a cada passo, as possibilidades de modificação dos diâmetros das tubulações da rede, de forma a minimizar o custo de investimento da reabilitação do sistema. O método foi testado para uma rede de distribuição que abastece um projeto de irrigação fictício, no qual existe deficiência de pressão em quase todos os pontos de consumo; enfim, o custo para a reabilitação da rede foi de 41% do custo original do sistema.<br>This paper presents a method of economic optimization aiming the rehabilitation of pressurized branched networks of water distribution for irrigation projects, which have flow and pressure deficiency at the consumption points. The method can be applied to looped networks of urban water supply, on condition that they are changed into branched ones, through the fictitious sectioning method. The methodology used is based on the Granados method of economic optimization of pressurized networks, which is an iterative process that selects step by step the possibilities of changes of the network pipe diameters, so as to optimize the investment cost of the rehabilitation system. The method was tested for a distribution network that supplies a fictitious irrigation project, in which there is pressure deficiency in almost all the consumption points. The network rehabilitation cost was 41% of the original cost
    corecore